
 

MAIA for CPE: Secure Device-to-Gateway Authentication Using Algorithmic MFA on 
ESP32 and Raspberry Pi 

Dipal Shah, Ph.D., Rahul Sharma, Ph.D. 

Abstract 

This white paper presents a practical deployment and evaluation of the patented MAIA 
authentication method (EP4327516B1) within a Customer Premises Equipment (CPE) 
security scenario. Specifically, the solution embeds the MAIA client into an ESP32-S3 IoT 
microcontroller, while hosting the MAIA server as a Python-based RESTful API on a 
Raspberry Pi 5. The implementation simulates real-world edge infrastructure where 
distributed, resource-constrained devices must securely authenticate with a local gateway 
without relying on static or reusable credentials. 

MAIA's core innovation lies in its algorithmic, policy-based multifactor authentication 
(MFA) system that generates a new, one-time-use encoded passcode for every 
authentication attempt using a hierarchical model built with Regulated Activation 
Networks (RAN). This approach eliminates password reuse, resists phishing and spoofing, 
and adapts easily to decentralized IoT environments. 

1. Introduction 

A core principle of MAIA is that the policy plays a central role in generating a unique, 
one-time-use password (encoded passcode) for every authentication attempt. Each policy 
defines a dynamic path through the Regulated Activation Network (RAN) model, ensuring 
that even with the same input passcode, the output is different every time. This mechanism 
guarantees that passwords are never reused across consecutive sessions, making 
interception or replay attacks ineffective. 

Edge computing environments such as CPE installations—whether in smart homes, small 
enterprises, or industrial settings—depend on secure, reliable, and scalable authentication 
between local IoT devices and gateway nodes. Traditional authentication methods relying 
on shared secrets, hardcoded credentials, or static tokens are increasingly vulnerable and do 
not scale well in autonomous or unattended systems. 

MAIA introduces a paradigm shift. Instead of reusing credentials, it generates a unique 
Encoded Passcode for each session based on a shared policy and a Regulated Activation 
Network (RAN) model that transforms the client’s input passcode into an abstract, 
encoded hierarchy. MAIA supports both centralized and decentralized 
configurations—offering flexibility depending on trust boundaries, resource availability, and 
deployment scale. 

This white paper describes a complete CPE-focused implementation and validation of MAIA 
using: 

●​ ESP32-S3 microcontroller for the client 

Copyrights of this white paper belong to PahiLabs LDA, IPN - Building C, Rua Pedro Nunes, 3030-199, parish of Santo António dos 
Olivais, Municipality of Coimbra, Portugal 



 

●​ Raspberry Pi 5 as the local server running a MAIA verification service 

●​ Wi-Fi network connectivity to simulate real-world gateway interaction 

 

2. System Architecture 

2.1 Hardware Configuration 

●​ Client Device: ESP32-S3 IoT microcontroller 

o​ Running MicroPython + MAIA client libraries 

o​ Connects over HTTP to gateway server 

●​ Server Gateway: Raspberry Pi 5 (8GB RAM) 

o​ Hosts a lightweight Python Flask RESTful API for authentication 

o​ Stores passcode hierarchies and policies 

2.2 Software Components 

●​ RAN Engine: 

o​ MicroPython implementation on ESP32 for local model creation 

o​ Python-based validator on Raspberry Pi 

●​ Policy Generator: 

o​ JSON-encoded object defining layers and node indices to extract encoded 

passcode values 

●​ Client Identity Representation: 

o​ Hierarchical encoded passcodes stored locally on ESP32 and registered 

remotely on the server 

2.3 Communication Protocol 

●​ RESTful API over HTTP/1.1 

●​ Endpoints: 

o​ /register: For initial passcode hierarchy and policy upload 

o​ /authenticate: For sending encoded passcode + next policy 

o​ /verify: For internal matching of encoded passcodes 

Copyrights of this white paper belong to PahiLabs LDA, IPN - Building C, Rua Pedro Nunes, 3030-199, parish of Santo António dos 
Olivais, Municipality of Coimbra, Portugal 



 

 

3. Authentication Workflow 

3.1 Registration 

1.​ The client (ESP32-S3) generates a synthetic dataset and builds a RAN-based 
hierarchical model. 

2.​ The client passcode is passed through the model to produce an Encoded Passcode 
Hierarchy. 

3.​ A random policy is generated and used to create the first Encoded Passcode. 

4.​ The hierarchy and policy are shared with the Raspberry Pi server for storage. 

3.2 Authentication 

The following diagram (Figure 1) illustrates the MAIA algorithmic multifactor 
authentication process in a typical CPE scenario. The ESP32-S3 client initiates an 
authentication request to the Raspberry Pi server, including the current encoded passcode 
and a newly generated policy. The server verifies the encoded passcode and responds with 
an authentication confirmation and stores the new policy for future sessions. This ensures 
that every authentication cycle uses a unique, one-time-use passcode, governed by a 
dynamic, evolving policy. 

 

 

 

 

 

 

 

 

 

Figure 1 : An Abstract Diagram showing how the MAIA MFA in CPE scenario where the ESP32-S3 
microcontroller is the client and the Raspberry Pi 5 is the MAIA server. The figure also shows How 
authentication is happening and the Use of One-Time passwords in the authentication 
 

 

Copyrights of this white paper belong to PahiLabs LDA, IPN - Building C, Rua Pedro Nunes, 3030-199, parish of Santo António dos 
Olivais, Municipality of Coimbra, Portugal 



 

The authentication process is initiated by the MAIA client, which sends an authentication 
request to the server containing the current encoded passcode and the next proposed 
policy. The MAIA server validates this passcode using the stored passcode hierarchy and the 
current policy. Upon successful authentication, the server responds with an authentication 
response and stores the newly received policy for the next expected session. This updated 
policy is essential—it defines the selection path through the client's RAN model for the next 
encoded passcode generation, ensuring that every password is unique and non-repeating. 

1.​ For each login, the ESP32 regenerates the encoded hierarchy using the same 
passcode and model. 

2.​ It applies the most recent shared policy to derive a new encoded passcode. 

3.​ The encoded passcode and a newly generated policy are sent to the server. 

4.​ The Raspberry Pi verifies the match using the stored hierarchy and expected policy. 

5.​ Upon success, the new policy is saved as the reference for the next session. 

 

4. Experimental Validation in a CPE Deployment 

We validated the MAIA authentication system by executing 1,000,000 authentication 
attempts between an ESP32-S3 client and a Raspberry Pi 5 server under stable Wi-Fi 
conditions. The following metrics were observed: 

4.1 Experimental Setup 

The authentication experiment was conducted in a controlled simulation environment to 
evaluate long-term behavior and policy reuse. A continuous authentication loop was 
executed, with a delay of 100 milliseconds between each authentication attempt. This setup 
simulates periodic device authentication in real-world edge environments. The complete 
simulation ran uninterrupted for approximately 29 hours, during which 1,000,000 
authentication operations were executed, and logs were collected for every policy used. 

●​ ESP32-S3 powered via USB, executing local model generation and encoded 
passcode formation 

●​ Raspberry Pi 5 running Flask API server, logging authentication events, policies, 
and timing 

●​ Network: Local Wi-Fi router (2.4 GHz, WPA2 secured) 

●​ Passcode: 4-element integer array (e.g., [30, 270, 150, 210]) 

4.2 Results Table 

Copyrights of this white paper belong to PahiLabs LDA, IPN - Building C, Rua Pedro Nunes, 3030-199, parish of Santo António dos 
Olivais, Municipality of Coimbra, Portugal 



 

Table 1 Observations of the Algorithmic MFA 

METRIC VALUE 

TOTAL AUTHENTICATION ATTEMPTS 1,000,000 

UNIQUE POLICIES GENERATED 999,467 

REPEATED POLICIES 533 

CONSECUTIVE POLICY REPEATS 0 

AUTHENTICATION FAILURES 0 

4.3 Observations 

●​ No Consecutive Reuse: As shown in Table 1, even with over one million 
authentications, not a single instance of consecutive policy reuse was observed, 
demonstrating the robustness of MAIA's non-repeating policy mechanism. 

●​ Early-Stage Performance: Up to 10,000 attempts, all policies remained unique. 

●​ Scalability: Even at scale (1M attempts), only ~0.05% policy reuse occurred, never 
consecutively, preserving cryptographic unpredictability. 

●​ Throughput and Efficiency: Sustained 250 authentications per second; <15% CPU 
load; <300 KB memory use confirms suitability for resource-limited edge devices. 

 

5. Use Case Impact 

The results validate MAIA’s performance and security guarantees in a real-world CPE 
scenario. Applications include: 

●​ Telecom and ISP Gateways: Onboard and authenticate modems, routers, and smart 
hubs securely. 

●​ Industrial IoT: Enable secure sensor-to-gateway communication in manufacturing 
plants. 

●​ Smart Homes: Control access to mesh devices without password configuration. 

●​ Networked Appliances: Authenticate control panels, energy meters, and 
surveillance nodes locally. 

MAIA’s decentralized model further reduces dependency on centralized identity servers, 
making it a strong candidate for future-proof zero-trust edge systems. 

 

Copyrights of this white paper belong to PahiLabs LDA, IPN - Building C, Rua Pedro Nunes, 3030-199, parish of Santo António dos 
Olivais, Municipality of Coimbra, Portugal 



 

6. Conclusion 

This CPE implementation of MAIA, with an ESP32-S3 as the client and a Raspberry Pi 5 as 
the gateway server, demonstrates a practical, scalable, and secure approach to IoT 
authentication. With lightweight resource demands, no credential reuse, and dynamic policy 
updates, MAIA ensures end-to-end trust in device-to-gateway communication. The use of 
algorithmic MFA not only mitigates risks from credential theft and spoofing but also enables 
fully autonomous identity verification for billions of connected devices. 

MAIA represents a pivotal advancement in secure edge computing—where intelligent, 
model-driven authentication is no longer optional, but essential. 

 

For access to firmware, REST API code, and results, please contact the Engineering Team at​
info@pahilabs.com​
PahiLabs, Coimbra, Portugal 

 

Copyrights of this white paper belong to PahiLabs LDA, IPN - Building C, Rua Pedro Nunes, 3030-199, parish of Santo António dos 
Olivais, Municipality of Coimbra, Portugal 

mailto:info@pahilabs.com

